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Abstract
We present a predictive Geometric Stress Index (pGSI) and its relation to behavioural
Entropy (bE). bE is a measure of the complexity of an organism’s reactivity to
stressors yielding patterns based on different behavioural and physiological variables
selected as Surrogate Markers of Stress (SMS). We present a relationship between
pGSI and bE in terms of a power law model. This nonlinear relationship describes
congruences in complexity derived from analyses of observable and measurable SMS
based patterns interpreted as stress. The adjective geometric refers to subdivision(s)
of the domain derived from two SMS (heart rate variability and steps frequency) with
respect to a positive/negative binary perceptron based on a third SMS (blood
oxygenation). The presented power law allows for both quantitative and qualitative
evaluations of the consequences of stress measured by pGSI. In particular, we show
that elevated stress levels in terms of pGSI leads to a decrease of the bE of the blood
oxygenation, measured by peripheral blood oxygenation SpO2 as a model of SMS.
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1 Introduction 1

This paper is an extension of our previous spectral theory of human stress, [1], 2

providing a posteriori analysis of stress experienced by a human subject (cf. 3

Section 4.1). In the presented communication, we explore the possibility to predict 4

mental and physical stress based on a finite number of measurements using various 5

types of mathematical techniques (cf. Section 3.8). 6

Continuous psychological stress monitoring in daily life is important. Chronic 7

stress has become a central issue in clinical and economic contexts of modern societies 8

as a result of its deleterious impact on both physical and psychological 9

health [34], [35], [36]. 10

Thus, continuous psychological stress monitoring in these contexts may become an 11

important aid to monitor stress levels in various contexts. Stress monitoring may 12
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allow for early detection or prediction and, thus, prevention of stress-related health 13

problems [33]. 14

There are two conventional methods to measure psychological stress, i.e., 15

self-reported and body fluid analysis. The self-report method is hard put to monitor 16

human stress consistently due to the lack of consistency. The body fluid analysis is 17

invasive and does not measure stress continuously. 18

We intend to illustrate the potential of complexity analytics using physiological 19

and behavioural data of a few healthy subjects. Specifically, we decided to use heart 20

frequency variability (HRV) and step frequency (SF) for the analyses as predictor 21

variables of the oxygen saturation in the blood as a binary perceptron approximated 22

by SpO2. These variables will serve as surrogate markers of stress (SMS). We 23

computed the heart rate variability from heart rate. 24

Other approach based on the Vector Support Machine is reported in [37] 25

The purpose of this communication is fourfold. 26

First, we introduce the predictive Geometric Stress Index using HF, SF and S2O2. 27

Complexity plays an important role in the objective indexing of SMS patterns [2], [1]. 28

We use the adjective “geometric” to indicate that we compute separation curve(s) in 29

the (0, 1)2 complexity space given the complexity projections of HRV × SF based on 30

the respective values of the perceptron separating normoxemia domain(s) from 31

hypoxemia domain(s). 32

Second, we re-define bE we have proposed elsewhere [3]. bE measures behavioural 33

and/or physiological reactivity distribution of a sequence of different events 34

represented by the complexity of a single pattern corresponding to, e.g., HRV. The 35

concept resides with the assumption that bE should not be evenly, or nearly so, 36

distributed in time. This approach is similar to the entropy concept in the physics 37

measuring uneven distributions of energy among atoms. Increasing non-uniform 38

energy distribution increases the entropy of ”a non-organic system” while keeping its 39

complexity high. Similar argumentation can be applied to living organisms [4]. 40

Third, we introduce the predictive Stress Resistance Index (pSRI) that is meant to 41

quantify human resistance to various forms of stress. pSRI is based on perceptron 42

values and their distances to the separation hyperplanes yielded by analyses of 43

time-series of SMS. 44

Fourth, we propose a power law model linking pGSI with behavioral entropy 45

applying it to time-series of SMS. We aim to predict stress in terms of pGSI in human 46

subjects as measured through the evolution of complexity patterns, using a power law 47

relating pGSI and bE(.). 48

In short, we present a proof of concept study showing that complexity analysis of 49

HRV and SF and SpO2 can be used as SMS to predict human stress. 50

2 Materials and methods 51

2.1 Quantities measured and computed 52

• Heart Frequency (HF) / Heart Rate Variability (HRV) 53

Heart Frequency was estimated by means of a motion-compensating algorithm 54

from pulse-induced variations of optical reflection from the skin under the sensor. 55

Heart rate variability (derived and computed from HF) refers to the variation in 56

the time interval between any two heartbeats. It is controlled by the 57

autonomous nervous system, which is very sensitive to stress. We can, thus, use 58

HRV as a surrogate marker of stress. It may be conceptualized as the standard 59

deviation of the mean heart rate over a certain period of time. 60
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• Steps Frequency (SF) 61

Movement corresponds to the instantaneous whole-body activity of a human 62

subject. The measurements were performed with a 3-axis accelerometer. The 63

indicator is given by energy variations of low-passed filtered differentials of 64

accelerometer measurements. Steps Frequency was determined as the inverse of 65

speed of movement. 66

• Blood Oxygenation Approximation (SpO2) 67

SpO2 was measured using reflected red and infrared light supported by 68

motion-compensating algorithms to estimate the ratio of hemoglobin molecules 69

in arterial blood. 70

2.2 Quantities used for the purpose of the study 71

We used HRV and SF for the analyses as predictor variables and SpO2 as a binary 72

perceptron. The choice of HRV and SF is meant to allow distinguishing increased 73

physical activity (e.g. sport activity leading to congruent increase of HF and SF) from 74

mental stress leading to incongruent HF increase and SF decrease. We felt the 75

limitation to two variables was adequate mainly for two reasons. 76

First, HR (usually its variability) is often used as an indicator of stress, and SF is a 77

reasonable indicator for the intensity of physical activity. Second, we felt the use of 78

only few variables was appropriate for the sake of simplicity for this proof of concept. 79

With the purpose to introduce an element of prediction, we assume that the choice of 80

SpO2 as a binary perceptron is adequate. Preliminary analysis revealed that SpO2 as 81

measured over time showed a great variability lending itself for the purpose of 82

complexity analyses. Furthermore, the term hypoxemia as used in this paper refers to 83

lower levels of oxygenation relative to the mean oxygen saturation of its complexity. A 84

further reason for the choice of the three SMS is that each of them has much bigger 85

variance over time compared to the rest of the sensory data we had at our disposal (cf. 86

also later). 87

Surrogate markers of stress 88

Stress is a complex phenomenon with numerous expressions that can be in the realm 89

of subjectivity, cognition, emotion, behaviour, impact etc. We cannot measure stress 90

per se. We can only measure one or more expressions of stress. Furthermore, we can 91

analyze the measures of stress expressions in appropriate ways. We call the results of 92

these analyses or the measures of these expressions “surrogate markers for 93

stress”(SMS). Thus, for instance, data delivered by sensors, such as HRV or SF, are 94

projected onto a three-dimensional space with the third dimension being the SpO2 95

perceptron. The combination and its distribution is what we interpret as SMS. 96

2.3 Procedures 97

The Biovotion VPM multi-sensor system was used. Each subject fixed the device to 98

the left arm using an adaptable elastic band according to the instructions established 99

by Biovotion, SA. 100

They carried the device for at least 6 hours between 13pm and 19pm while they 101

went on with their usual activity once at their work place and once during a weekend 102

day depending on their own choice. However, they were instructed to choose a day 103

with varying activity, preferably including physical activities and intermittent resting. 104

The subjects were to fill in a prepared standard sheet to jot down the approximate 105

beginning and end of their activities according to four categories: 106
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• nap/sleep/rest 107

• work activity or leisure activity without physical effort including changing places 108

without physical effort 109

• more intense physical activity, either work or sport, unusually strong emotional 110

events. They were further instructed that the relative change between activities 111

rather than the absoluteness of the intensity of activities should be the 112

determining feature. 113

2.4 Analyses 114

We use Logical Regression (LR) [5], [6], and the geometric 1 version on Artificial 115

Neural Networks (ANN) [7], [8], [9], to obtain separation relative to normoxemia – 116

hypoxemia boundaries in the H(HRV )×H(SF ) complexity space SpO2 perceptron 117

binary values. H(·) denotes the Hurst exponent of the enclosed SMS, [10]. The 118

complexity product space is based on the self-similarity scaling of normally distributed 119

SMS time-series that can be recorded over a meso-temporal time span [11]. A typical 120

distribution is shown at Fig. 1. Complexity expressed in terms of the Hurst exponent 121

is closely related to the Hausdorff-Besicovitch dimension. 122

Peripheral Oxygen Saturation Probability Density

20 40 60 80 100

%

Steps Frequency Probability Density

20 40 60 80
Steps per Minute

Heart Rate Probability Density

50 100 150
Beats per Minute

Fig 1. Typical probability densities of the stress indicatrix pertaining to Subject 4. The densities
are computed using 1, 828 data points representing 54, 850 seconds at 30 stroboscopic resolution using
histograms based on 60 bins. All three densities are very close to normal distribution and possess
approximate self-similarity.

2.5 SpO2 as a Binary Perceptron 123

The crucial choice is to select which surrogate data to consider. We choose the HRV 124

complexity and SF complexity as the two x and y axes, which express physiological 125

1 We use the word “geometric” to indicate that we compute separation curves of normoxemia –
hypoxemia domains.
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(HRV) and behavioural (SF) parameters. 126

We consider the pGSI to depend on three surrogate time discrete processes, i.e. HRV, 127

SF, and SpO2. The reason for the choice is that each of them have about ten to 128

hundred times bigger variance compared to the rest of the sensory data we measured 129

(cf. Section 5.2). 130

Furthermore, we chose SMS with high variance that also had some degree of 131

correlation. Table 3, Table 5 and Table 6 (cf. Section 5.1 indicating correlation among 132

HRV, SF, and SpO2). The tables indicate that SO2 is negatively correlated with both 133

HRV and SF. The correlation tables also highlight the differences among different 134

subjects. 135

Subsequently, we chose the complexity of SpO2 as the third surrogate data, Z. We 136

turn this variable into a binary perceptron using formula (2). The perceptron provides 137

a planar separation, given by smooth curve(s), of H(HRV) and H(SF). We lean on the 138

following argument, tangentially supported by [12], [13], [14], [15], [16], leading to the 139

choice of SpO2 as the binary perceptron. 140

A further reason for the choice of the SpO2 as binary perceptron is that 141

stress-hormones-induced changes occur that include the CO2/pH-dependent decrease 142

of the affinity of oxygen to hemoglobin due to the Bohr effect [17], thus increasing the 143

oxygenation potential in the tissues. 144

3 Results 145

3.1 The Predictive Geometric Stress Index (pGSI) 146

We propose a view of some of the acquired SMS leading to the definition of pGSI. 147

Consider three time-discrete vectors X = {x(ti)}ni=1, Y = {y(ti)}ni=1, n ≫ 1, and 148

Z = {z(ti)}ni=1 corresponding to three different sets of data representing HRV, SF and 149

SO2. These quantities have different physical units and different ranges. We remove 150

these discrepancies by projecting segmented sub-vectors on the complexity space 151

provided by the Hurst exponent [10] or, equivalently, by the Hausdorff-Besicovitch 152

dimension [18]. Using time equidistant coarse-grained segmentation {tm}km=1, we 153

compute 154

H : (x(tm), x(tm+1)) 7→ (0, 1],

∣∣∣∣∣
k−1∪
m=1

(tm, tm+1)

∣∣∣∣∣ = |tk − t1| , k > 1. (1)

We compute such projections for all three quantities yielding coarse-grained 155

complexity images of the three time-discrete vectors. We denote the new vectors by 156

H(X ), H(Y) and H(Z), respectively. We refer to the triple (H(X ),H(Y),H(Z) as 157

stress indicatrix. This projection, contained in (0, 1]3, is not invertible for we discard 158

micro-structural information contained in the originating time-series. 159

Further, we construct a binary perceptron {γ}km=1 mapping H(Z) 7→ {−1, 1} by 160

γm
def
= sign (H((z(tm), z(tm+1))− E [H (Z)]) , m = 1, . . . , k, (2)

where E[.] represents the mean of the enclosed quantity. 161

Considering the triples {H(X )m,H(Y)m, γm}km=1 ∈ (0, 1)2 × {−1, 1} we solve an 162

optimization problem providing “optimal”, possibly closed, curve(s) defining 163

subdomains Ω+
j and Ω−

i , i, j ∈ N, of (0, 1)2 such that 164∪
i>1

(
Ω+

i

)
∪
∪
j>1

(
Ω−

j

)
= (min(H(HRV)),max(H(HRV)))× (min(H(SF)),max(H(SF))).

(3)
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The respective subdomains are convex hulls separating points {H(X )m,H(Y)m} with 165

γm = 1 from the points with γm = −1. The optimization yields the smallest number of 166

these subdomains with the largest area at the expense of allowing a small number of 167

opposite signs to intermix, i.e., some points with γm = −1 can appear in some Ω+
i . We 168

solve this optimization problem using a combination of untrained (geometric)ANN 169

and LR. The optimization step yields a stress prediction diagram based on the 170

complexity of the acquired SMS using geometric extrapolation that yields planar 171

separation by a SpO2 binary perceptron. 172

Finally, we define pGSI, denoted τ , by 173

τ (H(X ),H(Y); γ)
def
=

meas
(∪

j≥1 Ω
+
j

)
meas(Ω)

∈ [0, 1]. (4)

3.2 pGSI Neutrality Baseline 174

We consider τ (·, ·; ·) = 1
2 as the baseline. This approach is justified by the following 175

observation. Let the underlining discrete time-series X , Y and Z be normally 176

distributed and self-similar. Then it is plausible to assume that 177

meas

∪
j>1

Ω−
j

 = meas

(∪
i>1

Ω+
i

)
iff

card ({γj = −1 | j > 1}) = card ({γj = 1 | j > 1}) , as i, j → +∞.

(5)

The normality assumptions are true in our computations. Normality distribution 178

accompanied by self-similarity of the chosen surrogate markers for stress is 179

fundamental to characterize the complexity of SMS. The examples shown in Fig. 1 are 180

computed using a histogram map with high resolution bins. 181

The equality represents the neutral state for it equates distribution of complexities 182

of the surrogate data. The geometry contains more information though. The 183

HRV × SF complexity space can be divided into four subregions reflecting complexity 184

covariance and contra-variance with respect to higher or lower than expected 185

individual SpO2, (c.f., Fig. 2). The two covariant regions, the lower-left and 186

upper-right quadrants, share the same short/long dynamical memories as well as 187

negative/positive autocorrelation of either complexity of HF and SF time-series. The 188

other two quadrants have opposite characterizations. Consider the upper-left 189

quadrant. While the x−axis, representing the complexity of SF, would indicate 190

complex SMS pattern, the HRV axis indicate a more regular pattern. These readings 191

combined with “below-the-mean” personal SpO2 can possibly indicate higher physical 192

activity. Furthermore, the lower-right quadrant may indicate mental stress when the 193

complexity of HRV and SF are reversed while the complexity of SpO2 is still low. 194

3.3 Predictive Stress Resistance Index (pSRI) 195

The predictive Stress Resistance Index (pRSI) is a further refinement of the pGSI 196

concept. It is based on the idea that the more data points are away from the 197

hypoxemia – normohypoxemia complexity boundary the more resistance to stress a 198

subject will be. 199

The resistance index, θ, is defined as follows. Let 200

m+ def
= card

({
(H(HRV)j ,H(SF)j) ∈

∪
i>1

Ω+
i

})
. (6)
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Fig 2. Left: Example of a segmentation of the complexity of HRV × SF space using SpO2 as a
binary perceptron. SpO2 low complexity level, indicating possibly hypoxemia, accompanies
incongruent complexity of HRV × SF combinations. Projecting the low levels of SpO2 onto the
HRV × SF two-dimensional space identifies regions with undesirable HRV/SF combinations. Region 1
(cf. the left drawing) corresponds to physical stress (high SF): low SpO2 complexity, high SF
complexity, low HRV complexity, i.e., low SpO2 relative to individual normhypoxemia. Region 2
corresponds to mental stress: low SpO2 complexity, low SF complexity, high HRV complexity, i.e., low
SpO2 relative to individual normoxemia despite low motion levels. Right: Interpretation of the
complexity indices.

pSRI is then given by, c.f., the left drawing at Fig. 6 201

θ
def
=

1

m+

m+∑
j=1

dist

((
{H(HRV)j ,H(SF)j} ∈

∪
i>1

Ω+
i

)
,
∪
i>1

∂Ω−
i

)
. (7)

The pGSI is a global index. It can be achieved by uncountably many different 202

configurations of the stress perceptrons. The predictive personalised stress diagram 203

(pPSD) indicates desirable combinations of HRV/SF complexity configurations with 204

respect to a higher level of SpO2. The red dots correspond to γ = −1, the green dots 205

correspond to γ = 1, i.e., to normoxemia perceptrons (cf. Fig. 5). 206

Comparing pGSI and pRSI for healthy Subject 6 (data are available upon request 207

from authors) we conclude, as an example of the application of the pGSI/pRSI 208

combination, that while pGSI of the Subject 6 ranks fourth. This indicates rather 209

medium to low ability to deal with the stress, at least if our assumptions are correct 210

(cf. Fig. 7 compared to Fig. 8). 211

3.4 Entropy of Behavioural Complexity 212

Consider a time discrete process X = {X(ti), i = 1, . . . ,m}, with its complexity given 213

by the Hurst exponent, H(X(ti)), computed using granulation of an underlying 214

time-series over a uniform segmentation (ti, ti+1) of (0, T ). The Entropy of 215

Behavioural Complexity [3], is defined by 216

bE(H(Xm))
def
=

m∑
i=1

|[[H (X(ti))]]| sign (H (X(tm))−H (X(t1))) . (8)

The Hurst exponent, H, denotes the complexity index of acquired normally 217

distributed SMS, [[]] denotes a jump of an enclosed quantity, i.e., 218

[[H (X (ti))]]
def
= H (X (ti))−H (X (ti+1)), ti are time equidistant points at which the 219

function h : t 7→ H(t) has a finite jump. The signum of the difference between the 220

complexities of previous and subsequent states indicate if the behaviours tend to a 221
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Fig 3. Simulated visualization of the underlying structure of the bE corresponding to two normally
distributed processes yielding the two piece-wise functions simulating distribution of the Hurst
exponent of a equipartitioned underlying physiological processes. The smooth curves are 4− th order
interpolation of the given data. The negative derivative of the blue curve indicates a tendency towards
more complex states with the Hurst exponent closer to zero. The red curve indicates the opposite type
of behaviour. The red distribution is characterized by bE(”red”) = 2.15 while bE(”blue”) = −2.95.

lower or higher complexity. The negative sign indicates the tendency towards higher 222

complexity, the positive sign indicates the opposite. 223

We adopt the following localized time discrete notion of the entropy of behavioral 224

complexity 2 (8) 225

bE(H(Xm))
def
=

m−1∑
i=1

|[[H (X(ti+1))]]| sign (H (X(ti+1))−H (X(ti))) . (9)

The above definition of the localized entropy is a sum of signed strengths of the 226

complexity discontinuities. 227

The definition of bE, (9), accounts also for the history of attaining certain 228

complexity states unlike its definition (8) that accounts only for the sign of the 229

difference between initial and terminal state. 230

The idea behind the (9) definition is that bE should be negative if the system 231

evolves, with some probability, to a state with higher complexity and positive when 232

the system evolves towards a lesser complexity state. Let us consider the example 233

presented in Fig. 3 using synthetic data generated by normally distributed random 234

numbers. The red piece-wise constant function is represented by bE = 2.15 while the 235

blue, decreasing function, bE = −2.95. 236

3.5 pGSI relation to bE 237

The importance of the relationship between pGSI and bE rests with manifestation that 238

increased levels of pGSI leads to lower levels of SpO2 and thus leading to increased 239

levels of CO2 in the blood. The relationship is described below a nd visualized at 240

Fig. 4. 241

We propose a power law model relating pGSI to respective bE(·) having the form 242

α pGSI(H(X ),H(Y); γ)β ∼ bE(H(V)), α, β ∈ R, (10)

where X , Y represent HRV and SF time-series. The third quantity, Z, is represented 243

by SpO2 as the binary perceptron γ given by (2). The time-series V represents the 244

remaining quantities. 245

We identify the power law quantities, α ∈ R and β ∈ R, by solving the following 246

2(H (X(tm))−H (X(t1))) is replaced by (H (X(ti+1))−H (X(ti))).
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non-linear problem 247

(αj , βj) = Argmin

{∣∣∣a τ (H(Xj),H(Yj); γj)
b − bE(Vj)

∣∣∣2 , {a, b} ∈ R2

}
,

j = 1, . . . ,# of subjects,
(11)

τ (H(X ),H(Y); γ) is given by (4). 248

The different power laws relating pGSI to bE of different patterns might explain 249

the relation between stress and complexity tendencies of SMS time-series. We include 250

the following example as an illustration. Consider X representing HRV, Y SF 251

complexities and Z SpO2 in the form of its binary perceptron γ. The computational 252

results indicate, e.g., that 253

0.1 τ (H(X ),H(Y); γ)
0.6 ≈ bE(H(X )), (12)

solving (11). 254

3.6 Power Laws 255

The Table 1 indicates l2 distance among the real value of bE and its approximation 256

using the presented power law (10). Scaling laws are shown in Table 2 and visualised 257

by Fig. 4. 258

Behavioral Entropy/Measured/Computed Quantities HRV Blood Oxygenation Perfusion Skin Temperature Relative Movement Steps Frequency

bE(HRV)/(Amplitude/Exponent) 0.07/ 0.4
bE(SpO2)/(Amplitude/Exponent) 0.1/0.1
bE(Perfusion)/(Amplitude/Exponent) -0.0003/5.
bE(Skin Temp)/(Amplitude/Exponent) -0.2/-0.3
bE(Movement)/(Amplitude/Exponent) -0.2/-0.3
bE(SF)(Amplitude/Exponent) -0.2/0.2

Table 1. The the power law is estimated using 8 subjects. The bE is computed from SMS
encompassing about 15 hours of data acquisition per subject.

pGSI/Behavioral Entropy/ bE(HRV) bE(Oxy) bE(Perf) bE(Temp) bE(Mov) bE(Steps)

pGSI(HR, SF, b-Oxy) 0.02 pGSI**0.2 -0.008 pGSI**0.05 0.02 pGSI**0.06 -0.06 pGSI**0.1 -0.09 pGSI**0.3 -0.04 pGSI**-0.08
l2 distance of scaled pGSI and bE(.) 0.114 0.117 0.215 0.309 0.385 0.271
l2 distance of pGSI and bE(.) 4.66 4.78 4.72 4.84 4.92 4.76

Table 2. The the power law is estimated using 8 subjects. The behaviuoral entropy is computed
from data encompassing about 15 hours of data acquisition per subject.

Fig. 4 shows bE(·) of HRV, SpO2 and SF as a function of pGSI. The curves shown at 259

Fig. 4 indicate that increased level of stress leads to increased bE of HRV, Perfusion 260

and Step frequency. The only exception to this is the complexity of SpO2 (cf. Fig. 4). 261

3.7 Correlation of HRV, SF and SpO2 262

We use simple Pearson product-moment correlation coefficient [19], to estimate SMS 263

dependency. The data summarised by Table 3, Table 4, Table 5, Table 6, Table 7, 264

Table 8, Table 9, and Table 10, in Section 5.1 show examples of correlations among 265

different sensory quantities of three different subjects. The first two tables correspond 266

to healthy men and women, respectively, the third table corresponds to a female 267

marathon runner, during a typical working day including night/sleep readings. The 268

first two tables show nearly equal negative correlation among HRV/SpO2 while that 269

third table indicates positive HRV/SpO2 and nearly none SF/SpO2 correlations. 270
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Fig 4. bE power laws. The figure is based on eight healthy subjects. The plot shows how the
complexity of different SMS behave with the increasing stress index, pGSI. The curves show that
complexity of all SMS increases except for the complexity of the SpO2.

3.8 Mathematical Technicalities 271

We address in this section some subtle points related to a construction of the personal 272

relative hypoxemia – normoxemia domain partitions in the H(HRV) × H(SF) × 273

γ(SpO2)
3 space, on which we can perform integration in order to compute domains 274

areas to be able to compute pGSI. We can identify domains separation curves, we can 275

compute distances to the separation boundaries, and we can decide which of the 276

acquired SMS belong to which subdomain to be able to compute pSRI. 277

We use both (geometric)ANN [20], [21] and LR [22], [23], [24], [25], in parallel to 278

process the complexity indices of the acquired SMS. The reason we use two different 279

techniques is to deal more effectively with small data sets. In the next step, we apply 280

three different techniques to identify clusters of points forming relative hypoxemia and 281

normoxemia subdomains, i.e., Bray-Curtis Dissimilarity measure/distance (a 282

non-Euclidian distance) [26], [27], [28], Chebyshev Distance [29], and Normalized 283

Squared Euclidian Distance. We use Calinski-Harabasz cluster criterion, [30]. We 284

select then the result with the least number of clusters. We then compute 285

convexification of the respective clusters as a coarse-grained partitioning of the 286

effective domain H(HRV)×H(SF) ⊂ (0, 1)2. We thus allow some hypoxemia points to 287

belong to normoxemia subdomains and vice-versa. These steps fundamentally simplify 288

subsequent construction of Delaunay triangulations [31], [32], based on the identified 289

points in the complexity effective domain of the respective subdomains. Typically, we 290

use 60× 60 mesh points. Lastly, we disconnect the respective subdomains by small 291

layers improving the quality of the triangulation by avoiding edges of the opposite 292

classification. An example of the outcome of these procedures is shown in Fig. 5. 293

3.9 Results Pertaining to Human Stress and Stress Resistance 294

Below we report a number of findings applying our theory to real individuals. The 295

density plot on the right at Fig. 6 shows an example indicating the personal 296

hypoxemia(blue) – normoxemia(yellow) boundary between H(HRV ) and H(SF ) 297

determined by non-linear optimization using the personal SO2 perceptron. 298

To interprete the density projection shown in Fig. 6, consider two different 299

scenarios. Focusing on the lower boundary of the normoxemia – hypoxemia domain, 300

complexity of HRV, i.e., H(HRV) > 1/2, exhibits lower complexity compared to SF 301

3 γ denotes the perceptron.
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Fig 5. The Delaunay mesh and its separation to normoxemia and hypoxemia subdomains of
Subjects 4 and 6, respectively, used to compute both pGSI and pSRI. The predictive component of
the analysis is associated with the assumption that the boundaries Γi, i = 1, 2, should remain stable
while the complexity data points can move around the effective complexity domain H(HRV)×H(SF).

complexity, H(SF) < 1/2, with a ratio of approximately 1 : 3. The grey point at this 302

boundary illustrates this scenario. The combination might represent physical activity 303

of a trained and healthy subject. 304

The second scenario, represented by both H(HRV), H(SF) being below 1/2, shown 305

by the grey dot at the upper boundary of the γ = 1 subdomain, indicates that HRV 306

and SF complexities approximately match. Consequently, the first scenario might 307

correspond to a physical stress (high activity), while the second scenario corresponds 308

to a mental stress represented by high complexity of HRV with lower complexity of SF. 309

Consider segment # 8 (24:00 - 03:00) shown at Fig. 6 that corresponds to a period 310

of sleep, in which higher complexity of HRV is accompanied by a near absence of SF 311

complexity and a lower SpO2 complexity. Segment # 3 (15:00 - 17:00) is 312

approximately opposite to segment # 8. The segment # 4 has all the characteristics 313

of the first scenario, i.e. physical activity. 314

3.10 Data segmentation and coarse-graining 315

The data segmentation, complexity analyses results, and their projection to a 316

three-dimensional space are shown at Fig. 6. 317

3.11 pGSI and pSRI 318

The figure Fig. 8 shows comparison between the two measures, pGSI and pSRI. 319

Comparing pGSI and pRSI for Subject 6 we conclude, as an example of the 320

application of pGSI/pRSI combination, that while pGSI of Subject 6 ranks fourth, its 321

pRSI is much lower. According to our interpretation, this may indicate rather medium 322

to low ability to deal with stress (c.f., Fig. 7 compared to Fig. 8). 323

3.12 Recruitment 324

Eight healthy subjects working at SUPPA, part of the Department of Psychiatry at 325

Lausanne University Hospital, four men and four women agreed on carrying a 326

Biovotion’s VSM (Vital Signs Monitor) during work days including daily routines and 327

sleep. 328
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Fig 6. The left plot. Segmentation of SpO2) and its projection on H(HRV )×H(SF ) space in the
form of SpO2) using (geometric)ANN. The step-like function indicates the value of the Hurst index
for each segment. The right plot. The yellow color indicates SpO2)-perceptron value γ = 1, given by
(2), Ω+, i.e., normhypoxemia, blue colour indicates γ = −1, Ω−

i , i = 1, 2. The grey circles are
positioned at the boundary of a convex hull of certain number of points with γ = +1. The analyzed
data correspond to a human subject encapsulating 15 hours of SMS acquisition. Each segment
contains about 225 data points. The green horizontal line indicates mean of SpO2), the orange
represents the mean of the complexity segments.
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Fig 7. Figure shows pGSI (left graph) and pSRI (right graph) and allows comparison between the
two measures. To help interpret the meaning of this comparison, we may consider two subjects as
examples. Considering Subject 6 we may conclude that while his pGSI ranks fourth, his pRSI is much
lower. According to our interpretation, this may indicate rather medium to low ability to deal with
stress. Considering Subject # 4, we may conclude that while pGSI ranks lowest, his pRSI is among
the highest of the 8 subjects. This may indicate a rather high capacity to deal with stress. Analogous
interpretations may apply to the remaining subjects.

3.12.1 Subjects’ inclusion criteria 329

Subjects had to be between twenty five and fifty five years and report good general 330

subjective health. 331

3.12.2 Subjects’ exclusion criteria 332

Subjects reporting the presence of any psychiatric or neurological disorders (stroke, 333

dementia, epilepsy, tumor, schizophrenia, bipolar disorder or major recurrent 334

depression, alcoholism or alcohol abuse or unhealthy use of other psychoactive 335

substances. 336

3.13 Ethics 337

The investigation was carried under ethics application “Indexation mathématique de 338

mesures physiologiques multiples non-invasives en milieu réel chez des sujets sains”, 339

CHUV, Lausanne Switzerland. The ethical issues were approved by a review board at 340

Research Ethics Commissions at the University of Lausanne, CER-UNIL. 341
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In addition each subject signed “Informed Consent” prior to measurements of the 342

data. 343

The collection and handling of data has been carried out in accordance to EU 344

current regulations, GDPR. 345

4 Discussion and conclusion 346

The main idea behind our approach is to use three dimensional phase spaces to model 347

human stress. Our approach is based on the use of SpO2 as the binary perceptron as 348

well as HRV and SF as surrogate markers for SMS. 349

pGSI is derived using complexity analysis of three parameters. Namely, heart rate 350

variability, step frequency and blood oxygenation as a binary separation parameter. 351

We provide an additional argument to justify our choice: the surrogate data 352

variance. Among all the surrogate time-series the three data collections chosen exhibit 353

the largest variance of all, c.f., Table 11 and Table 12, corresponding to a highly 354

trained and healthy subjects, respectively. Other data exhibit the same pattern. The 355

combination of both the physiological and observational statistics arguments imply 356

that the complexity characteristics of heart rate, steps frequency and SpO2 should be 357

sufficient to index a level of stress. 358

The novelty of the proposed model of stress is to allow for prediction of building of a 359

stress. 360

The pGSI index separates high physical activity from what we interpret as mental 361

stress. Our analyses suggests that subjects can be distinguished regarding their overall 362

SMS levels. Our analysis also suggests that stress is not necessarily low during sleep. 363

Both indices, i.e., H(HRV) and H(SF) complexities correspond well with the HRV and 364

SF raw data. Low stress modes typically exhibit a positive correlation between HRV 365

and SpO2 while high stress modes have the opposite impact. 366

The results obtained using the geometric indices are very similar to those based on 367

spectral theory [1]. However, the spectral concept is very different from the geometric 368

one. The combination of HRV and SF complexity changes over time predicts SpO2 369

complexity. Based on the variable congruency between HRV and SF and the degree of 370

SpO2 complexity, behavioural states can be extrapolated (or predicted) as either being 371

in the normal, high-physical activity, or mental stress realm. 372

We will provide evidence of correlation of the results produced by our approach 373

with those obtained through measurements of other indicators of mental stress status. 374

Measuring subjective stress levels or dosing stress hormones in blood or saliva such as 375

α-amylase, cortisol or adrenalin, as well as others are necessary to prove clinical 376

usefulness. However, none of the measures just mentioned above can be considered 377

absolute gold standards of stress measurements. Subjective assessment of stress may 378

be hampered in subjects with psychiatric disorders and vary widely among the normal 379

population. Measures of hormones or neurotransmitters in blood or saliva are 380

necessarily coarse-grained over time as they are invasive procedures and constitute no 381

realistic approach in clinical settings. HRV is sometimes used as another measure of 382

stress and may be considered a gold standard for stress measures. The relationship 383

between heart rate variability and salivary cortisol levels has been proven [33]. 384

However, the similarity of results of our spectral and geometric approach suggests our 385

approach is promising. 386
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Fig 8. The predictive stress diagrams of Subjects 4 (left) and 6 (right) shown are generated using
complexity and ANN, LR analyses.

4.1 Context 387

We introduced the concept of Hausdorff-Besicovitch dimension to understand 388

physiological and/or behavioral patterns in [3]. The idea was to coarse-grain the 389

time-series obtained from wearable sensors and to provide dimensionless data 390

projected on an Euclidian space. We extended this concept to human identification 391

based on behavioral data [2] and spectral theory of stress [1] later. Our goal was to 392

develop an equivalent to temperature pertaining to psychiatry. More importantly, our 393

ambition in short. 394

Previously, we had used the concept of the Hausdorff-Besicovitch dimension to 395

understand physiological and/or behavioral patterns in [3]. The idea was to 396

coarse-grain the time-series obtained from wearable sensors and to provide 397

dimensionless data projected on an Euclidian space. We extended this concept to 398

human identification based on behavioral data [2] and provided a spectral theory of 399

stress [1]. Our goal was to develop a simple numerical equivalent to stress, 400

conceptually similar to what temperature is to Brownian motion. 401

More generally, we aim at developing, implementing and applying, within clinical 402

environments, personalized ecological technology-assisted monitoring based on the 403

synergistic development of novel advanced mathematical tools, novel wearable 404

non-disruptive multi-channel biosensing, and remote diagnosis delivery mechanisms. 405

This effort is focusing on providing objective and clinically significant diagnosis and 406

evaluation methods for mental disorders at the behavioural level to health 407

practitioners. 408

Current clinical observations and practice in mental health rely on subjective 409

appreciations by healthcare professionals, patients and their relatives. Their accuracy 410

critically depends on the observer’s competence and they are limited by time 411

restraints leading to discontinued coarse-grained sampling that is often 412

questionnaire-based, clinical in nature or occasional objective measures such as blood 413

sampling, (f)MRI, EEG and others. More surmise that objective and continuous 414

measures will help greatly in clinical practice to increase diagnostic efficacy, precision 415

and, ultimately, decrease suffering and costs. 416
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5 Supporting information 417

5.1 Correlation tables 418

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 0.312616 -0.40399 0.061539 0.620625 0.591639
Perfusion 1 -0.420654 0.0780781 0.200189 0.322364
Blood Oxygenation 1 0.00443487 -0.366836 -0.414813
Skin Temperature 1 0.0546847 0.0134603
Relative Movement 1 0.859321
Steps Frequency 1

Table 3. The correlation of the SMS for Subject 1. The correlation was obtained from 894
equidistant time segments of acquired data.

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 -0.0144155 -0.281479 -0.178694 0.445759 0.366347
Perfusion 1 -0.0231772 -0.090395 0.103687 0.0946516
Blood Oxygenation 1 0.121536 -0.275235 -0.268467
Skin Temperature 1 -0.337818 -0.254233
Relative Movement 1 0.797544
Steps Frequency 1

Table 4. The correlation of the SMS for subject 2. The correlation was obtained from 431
equidistant time segments of acquired data.

Quantities HFV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HFV 1 -0.0304565 -0.218817 0.101863 0.468396 0.456581
Perfusion 1 -0.0370708 0.10752 0.123471 0.143789
Blood Oxygenation 1 -0.0848257 -0.267274 -0.239368
Skin Temperature 1 0.0983426 0.0782243
Relative Movement 1 0.878678
Steps Frequency 1

Table 5. The correlation of the SMS for subject 3. The correlation was obtained from 1160
equidistant time segments.

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 -0.17864 0.251414 0.0637194 0.625233 0.676598
Perfusion 1 -0.413867 0.0450275 0.124743 0.0341549
Blood Oxygenation 1 -0.0803077 -0.107687 -0.0287573
Skin Temperature 1 -0.0155391 0.0199515
Relative Movement 1 0.863616
Steps Frequency 1

Table 6. The correlation of the SMS for Subject 4. The correlation was obtained from 374
equidistant time segments.

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 -0.25438 -0.286885 -0.303626 0.699491 0.580695
Perfusion 1 0.141447 0.422901 -0.044777 -0.014162
Blood Oxygenation 1 0.102708 -0.148153 -0.041951
Skin Temperature 1 -0.055175 0.0165696
Relative Movement 1 0.905904
Steps Frequency 1

Table 7. The correlation of the SMS for subject 5. The correlation was obtained from 1826
equidistant time segments.
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Quantities HFV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HFV 1 0.10924 -0.129858 0.0153075 0.350668 0.267524
Perfusion 1 -0.146234 0.112445 0.229024 0.206663
Blood Oxygenation 1 -0.187969 -0.311809 -0.207137
Skin Temperature 1 -0.0353194 -0.0188643
Relative Movement 1 0.778953
Steps Frequency 1

Table 8. The correlation of the SMS for subject 6. The correlation was obtained from 642
equidistant time segments.

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 0.167969 -0.36686 -0.0750689 0.630799 0.608615
Perfusion 1 -0.253866 0.200398 0.284085 0.311865
Blood Oxygenation 1 0.217739 -0.437872 -0.389442
Skin Temperature 1 -0.0674336 -0.00604729
Relative Movement 1 0.93125
Steps Frequency 1

Table 9. The correlation of the SMS for subject 7. The correlation was obtained from 1658
equidistant time segments.

Quantities HRV Perfusion Blood Oxygenation Skin Temperature Relative Movement Steps Frequency

HRV 1 -0.0450726 -0.112492 -0.107827 0.483597 0.479533
Perfusion 1 -0.107982 -0.0231544 -0.0138105 -0.0816
Blood Oxygenation 1 0.130734 -0.236126 -0.170944
Skin Temperature 1 -0.0825037 -0.032942
Relative Movement 1 0.901963
Steps Frequency 1

Table 10. The correlation of the SMS for subject 8. The correlation was obtained from 452
equidistant time segments.

5.2 Two variance tables 419

Quantities Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8

HRV 22.3652 37.8688 43.3020 70.4190 66.9771 20.2466 27.4566 27.9333
Perfusion 0.00210023 0.00303487 0.0142073 0.00308452 0.00448286 0.00580235 0.0437197 0.00561481
Blood Oxygenation 16.4855 44.9826 34.3267 12.5918 12.6589 19.9398 7.82296 4.68279
Skin Temperature 0.915423 0.0705794 0.018323 0.0235593 0.0229517 0.0999276 0.377792 0.27331
Relative Movement 0.522469 0.51333 1.06422 3.57759 1.56432 0.498561 0.156739 0.0188911
Steps Frequency 54.9058 30.7965 102.836 613.618 333.916 22.4165 3.5368 0.00266509

Table 11. The variance of the SMS for Subject 4. The variance was obtained from 374 equidistant
time segments of acquired data.

Quantities Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8

HRV 339.983 101.478 118.456 146.107 522.311 34.4726 19.3977 13.9784
Perfusion 0.0543121 0.0315185 0.00918733 0.00217061 0.0114509 0.00109113 0.00178169 0.0134619
Blood Oxygenation 66.8304 68.556 16.1578 13.3593 12.07 2.83156 3.41918 8.13148
Skin Temperature 0.425757 0.44536 0.488427 0.197185 2.53583 0.2535 0.350932 0.0978087
Relative Movement 4.34773 0.263877 3.22692 2.39485 5.16624 0.251206 0.31262 0.712321
Steps Frequency 447.909 20.6665 356.858 216.062 772.406 4.34818 10.0686 22.1422

Table 12. The variance of the SMS for Subject 6. The variance was obtained from 642 equidistant
time segments of acquired data encompassing about 15 hours of data acquisition.
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